Jay Katupitiya

Associate Professor


About Jay

Associate Professor Jayantha Katupitiya is from the School of Mechanical and Manufacturing Engineering. His research interests include:

Autonomous Large Vehicle Guidance
The research in this area is directed at automating large scale ground vehicles that operate on the agricultural fields and their autonomous navigation to conform to traversing specifications. They are, in general, articulated vehicle systems, in which a large tractor is providing propulsion and steering, and large implements are passively dragged behind. The control inputs to such a system are inadequate to guide the implements to follow a specified path. The research is aimed at providing the necessary control inputs at the implements to enable the precision autonomous navigation of the entire system. Research includes: i) the kinematic modelling of articulated systems taking into account the lateral and longitudinal wheels slips, ii) determination of force inputs using approximate dynamic models and the kinematic system responses, and iii) the design of controllers.

Cooperative Control of Heterogeneous Autonomous Vehicles
The research aims to achieve asynchronous cooperative control between one air vehicle and a fleet of ground vehicles. The goal is to navigate the ground vehicles to concurrently carry out a single task or to carry out a spatially distributed set of sub tasks that forms parts of a major task, under the supervision and coordination of the aerial vehicle. The fleet of ground vehicles are assumed to be distributed at different locations. In the case of a single task, the ground vehicles are assumed to have complementary capabilities. In the case of multiple tasks the ground vehicles may possess identical or complementary task execution capabilities. A practical scenario is bush fire containment. The research issues involve task identification and localisation through sensing carried out by the aerial vehicle, task scheduling, terrain mapping using the aerial vehicle, path planning for ground vehicles using terrain data and autonomous navigation of ground vehicles to their scheduled destinations. In particular, the research aims at developing a software architecture for the cooperative control of the group of vehicles and the development of methodologies for the direct navigation and control of ground vehicles under the continuous and direct command of aerial vehicles without the use of GPS data.